Advertisement Remove all ads

Find the Area of the Parallelogram Whose Diagonals Are 3 ^ I + 4 ^ J and ^ I + ^ J + ^ K - Mathematics

Sum

Find the area of the parallelogram whose diagonals are  \[3 \hat{ i }  + 4 \hat{ j }  \text{ and } \hat{ i } + \hat{ j } + \hat{ k }\]

 

Advertisement Remove all ads

Solution

\[ \text{ Let: } \]
\[ \vec{a} = 3 \hat{ i } + 4 \hat{ j }  + 0 \hat{ k }  \]
\[ \vec{b} = \hat{ i }  + \hat{ j }  + \hat{ k }  \]
\[ \therefore \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i }  & \hat{ j } & \hat{ k }  \\ 3 & 4 & 0 \\ 1 & 1 & 1\end{vmatrix}\]
\[ = \left( 4 - 0 \right) \hat{ i }  - \left( 3 - 0 \right) \hat{ j }  + \left( 3 - 4 \right) \hat{ k}  \]
\[ = 4 \hat{ i }  - 3 \hat{ j }  - \hat{ k }  \]
\[ \Rightarrow \left| \vec{a} \times \vec{b} \right| = \sqrt{4^2 + \left( - 3 \right)^2 + \left( - 1 \right)^2}\]
\[ = \sqrt{26}\]
\[\text{ Area of the parallelogram }  =\frac{1}{2}\left| \vec{a} \times \vec{b} \right|\]
\[ = \frac{\sqrt{26}}{2} \text{ sq. units } \]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 12 Maths
Chapter 25 Vector or Cross Product
Exercise 25.1 | Q 9.3 | Page 30
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×