Advertisement Remove all ads

Find the Area of the Parallelogram Determined by the Vector 3 ^ I + ^ J − 2 ^ K and ^ I − 3 ^ J + 4 ^ K - Mathematics

Sum

Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j }  - 2 \hat{ k } \text{  and }  \hat{ i }  - 3 \hat{ j }  + 4 \hat{ k } \] .

 

Advertisement Remove all ads

Solution

\[ \text{ Let } : \]
\[ \vec{a} = 3 \hat{ i }  + \hat{ j }  - 2 \hat{ k }  \]
\[ \vec{b} = 1 \hat{ i } - 3 \hat{ j }  + 4 \hat{ k } \]
\[ \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i } & \hat{ j }  & \hat{ k }  \\ 3 & 1 & - 2 \\ 1 & - 3 & 4\end{vmatrix}\]
\[ = \hat{ i } \left( 4 - 6 \right) - \hat{ j }  \left( 12 + 2 \right) + \hat{ k } \left( - 9 - 1 \right)\]
\[ = - 2 \hat{ i } - 14 \hat{ j  }  - 10 \hat{ k }  \]
\[\text{ Area of the parallelogram } =\left| \vec{a} \times \vec{b} \right|\]
\[ = \sqrt{\left( - 2 \right)^2 + \left( - 14 \right)^2 + \left( - 10 \right)^2}\]
\[ = \sqrt{300}\]
\[ = 10\sqrt{3} \text{ sq. units } \]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 12 Maths
Chapter 25 Vector or Cross Product
Exercise 25.1 | Q 8.3 | Page 29
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×