Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Find the angle between the planes `bar r.(2bar i+barj-bark)=3 and bar r.(hati+2hatj+hatk)=1`
Advertisement Remove all ads
Solution
Given planes are:
`barr.(2hati+hatj-hatk)=3 and bar r.(hati+2hatj+hatk)=1`
The angle between two planes with direction ratios,
`(a_1,b_1,c_1) ` and `(a_2,b_2,c_2) ` is
`costheta=(a_1a_2+b_1b_2+c_1c_2)/(sqrt(a_1^2+b_1^2+c_1^2) sqrt(a_2^2+b_2^2+c_2^2))`
`costheta=(2xx1+1xx2-1xx1)/(sqrt(2^2+1^2+(-1)^2) sqrt (1^2+2^2+1^2))`
`costheta=3/(sqrt6.sqrt6)`
`costheta=3/6`
`costheta=1/2`
`costheta=cos(pi/3)`
`theta=pi/3`
Concept: Angle Between Two Planes
Is there an error in this question or solution?