Advertisement Remove all ads

Find All Values of ( 1 + I ) 1 3 and Show that Their Continued Product is (1+I). - Applied Mathematics 1

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Find all values of `(1+i)^(1/3)` & show that their continued
Product is (1+i).

Advertisement Remove all ads

Solution

Let           x=`(1+i)^(1/3)`

∴ `x^3=1+i=sqrt2(1/sqrt2+i/sqrt2)`

∴ `x^3=sqrt2[cos (pi/4)+isin (pi/4)]`

Add period 2k 𝝅 , 

`x^3=sqrt2[cos(1/3)(pi/4+2kpi)+isin(pi/4+2kpi)]`

By applying De Moivres theorem, 

`x=2sqrt2[cos(1/3)(pi/4+2kpi)+isin(1/3)(pi/4+2kpi)]`

where k =0,1,2. 

Roots are : 

Put k=0      ` x_0=2sqrt2_e i pi/12`

Put k=1     ` x_1=2sqrt2_ei(9pi)/12`

`Put  k=2    x_2=2sqrt2_ei(17pi)/12` 

The continued product of roots is given by , 

`x_0x_1x_2`= `2sqrt2eipi/12xx2sqrt2ei(9pi)/12xx2sqrt2ei(17pi)/12`

        =`16 sqrt2_e i(27pi)/12`

      = `sqrt2(1/sqrt2+i/sqrt2)` 

     = 1+i 

The continued product of roots is (1+i).

Concept: D’Moivre’S Theorem
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×