Advertisement Remove all ads

Find All Values of ( 1 + I ) 1 3 and Show that Their Continued Product is (1+I). - Applied Mathematics 1

Find all values of `(1+i)^(1/3)` & show that their continued
Product is (1+i).

Advertisement Remove all ads

Solution

Let           x=`(1+i)^(1/3)`

∴ `x^3=1+i=sqrt2(1/sqrt2+i/sqrt2)`

∴ `x^3=sqrt2[cos (pi/4)+isin (pi/4)]`

Add period 2k 𝝅 , 

`x^3=sqrt2[cos(1/3)(pi/4+2kpi)+isin(pi/4+2kpi)]`

By applying De Moivres theorem, 

`x=2sqrt2[cos(1/3)(pi/4+2kpi)+isin(1/3)(pi/4+2kpi)]`

where k =0,1,2. 

Roots are : 

Put k=0      ` x_0=2sqrt2_e i pi/12`

Put k=1     ` x_1=2sqrt2_ei(9pi)/12`

`Put  k=2    x_2=2sqrt2_ei(17pi)/12` 

The continued product of roots is given by , 

`x_0x_1x_2`= `2sqrt2eipi/12xx2sqrt2ei(9pi)/12xx2sqrt2ei(17pi)/12`

        =`16 sqrt2_e i(27pi)/12`

      = `sqrt2(1/sqrt2+i/sqrt2)` 

     = 1+i 

The continued product of roots is (1+i).

Concept: D’Moivre’S Theorem
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×