Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Solution
Let I = `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
`=>I=int((3sintheta-2)costheta)/(5-(1-sin^2theta)-4sintheta)d theta`
`=>I=int((3sintheta-2)costheta)/(sin^2theta-4sin theta+4)d theta`
Now, let sin θ=t.
⇒ cos θ dθ=dt
`:.I=int(3t-2)/(t^2-4t+4)`
`=>3t-2=Ad/dx(t^2-4t+4)+B`
`=>3t-2=A(2t-4)+B`
`=>3t-2=(2A)t+B-4A`
Comparing the coefficients of the like powers of t, we get
`2A=3=>A=3/2`
and
B-4A=-2
`=>B-4xx3/2=-2`
`=>B=-2+6=4`
Substituting the values of A and B, we get
`3t-2=3/2(2t-4)+4`
`:.I=int((3t-2)dt)/(t^2-4t+4)`
`=int((3/2(2t-4)+4)/(t^2-4t+4))dt`
`=3/2int((2t-4)/(t^2-4t+4))dt+4intdt/(t^2-4t+4)`
`=3/2I_1+4I_2 `
Here,
`I_1=int((2t-4)dt)/(t^2-4t+4) `
Now,
`I_2=int((2t-4)dt)/(t^2-4t+4)`
Let t2−4t+4=p
⇒(2t−4) dt=dp
`I_1=int((2t-4)dt)/(t^2-4t+4)`
`=int(dp)/p`
=log |p|+C1
=log |t2−4t+4|+C1 ......(2)
and
`I_2=intdt/(t^2-4t+4)`
`=intdt/(t-2)^2`
= ∫(t−2)−2 dt
`=(t-2)^(-2+1)/(-2+1)+C_2`
`=(-1)/(t-2)+C_2 " .......(3)"`
From (1), (2) and (3), we get
`I=3/2log|t^2-4t+4|+4xx-1/(t-2)+C_1+C_2`
`=3/2log|sin^2theta-4sintheta+4|+4/(2-t)+C " (Where C=C1+C2)"`
`=3/2log|(sintheta-2^2)|+4/(2-sin theta)+C`
`=3/2xx2log|sintheta-2|+4/(2-sintheta)+C`
`=3log|2-sintheta|+4/(2-sintheta)+C`