Advertisement
Advertisement
Sum
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
Advertisement
Solution
No.of. sides | Each exterior angle | Each interior angle |
(i) 8 | 45° | 135° |
(ii) 12 | 30° | 150° |
(iii) 5 | 72° | 108° |
(iv) 8 | 45° | 135° |
(v) 12 | 30° | 150° |
(vi) 9 | 40° | 140° |
Explanation:
(i) Each exterior angle = `360^circ/8 = 45^circ`
Each interior angle = 180° - 45° = 135°
(ii) Each exterior angle = `360^circ/12 = 30^circ`
Each interior angle = 180° - 30° = 150°
(iii) Since each exterior = 72°
∴ Number of sides = `360^circ/72^circ = 5`
Also interior angle = 180° - 72° = 108°
(iv) Since each exterior = 45°
∴ Number of sides = `360^circ/45^circ = 8`
Also interior angle = 180° - 45° = 135°
(v) Since interior angle = 150°
Exterior angle = 180° - 150° = 30°
∴ Number of sides = `360^circ/30^circ = 12`
(vi) Since interior angle = 140°
Exterior angle = 180° - 140° = 40°
∴ Number of sides = `360^circ/40^circ = 9`
Concept: Regular Polynomial
Is there an error in this question or solution?