###### Advertisements

###### Advertisements

Fill in the blank

A continuous piece of a circle is ............... of the circle

###### Advertisements

#### Solution

A continuous piece of a circle is Arc of the circle.

#### APPEARS IN

#### RELATED QUESTIONS

Prove that there is one and only one tangent at any point on the circumference of a circle.

In Fig., if AB = AC, prove that BE = EC

Write True or False. Give reason for your answer.

A circle has only finite number of equal chords.

If from any point on the common chord of two intersecting circles, tangents be drawn to circles, prove that they are equal.

In the given figure, *AB* is a chord of length 16 cm of a circle of radius 10 cm. The tangents at *A* and* B* intersect at a point *P*. Find the length of *PA*.

In the given figure, BC is a tangent to the circle with centre O. OE bisects AP. Prove that ΔAEO~Δ ABC.

Fill in the blank

Circles having the same centre and different radii are called ...........................circles.

true or false

A circle is a plane figure.

O is the centre of a circle of radius 10 cm. P is any point in the circle such that OP = 6 cm. A is the point travelling along the circumference. x is the distance from A to P. what are the least and the greatest values of x in cm? what is the position of the points O, P and A at these values?

Two parallel chords are drawn in a circle of diameter 30.0 cm. The length of one chord is 24.0 cm and the distance between the two chords is 21.0 cm; find the length of another chord.

In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC

at P and OA at Q. Prove that:

(i) ΔOPA ≅ ΔOQC, (ii) ΔBPC ≅ ΔBQA.

In the given figure, O is the centre of the circle. If ∠AOB = 140° and ∠OAC = 50°; Find:

(i) ∠ACB, (ii) ∠OBC, (iii) ∠OAB, (iv) ∠CBA.

In the given figure, AB is a side of a regular six-sided polygon and AC is a side of a regular eight sided polygon inscribed in the circle with centre O. Calculate the sizes of:

(i) ∠AOB, (ii) ∠ACB (iii) ∠ABC

In the following figure, AB is the diameter of a circle with centre O and CD is the chord with length equal to radius OA.

Is AC produced and BD produced meet at point P; show that ∠APB = 60°

In the given figure, a triangle ABC is drawn to circumscribe a circle of radius 2 cm such that the segments BD and DC into which BC is divided by the point of contact D, are of lengths 4cm and 3cm respectively. If the area of 2 ABC 21cm then find the lengths of sides AB and AC.

In Fig 2, a circle touches the side DF of ΔEDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then the perimeter of ΔEDF (in cm) is:

In the given figure, *AB* and *CD* are diameters of a circle with centre *O*. If ∠*OBD* = 50°, find ∠*AOC*.

In a cyclic quadrilateral *ABCD* if *AB* || *CD* and ∠*B** *= 70°, find the remaining angles.

In a cyclic quadrilateral *ABCD*, if *m *∠*A* = 3 (*m* ∠*C*). Find *m* ∠*A*.

In the given figure, if chords *AB *and *CD* of the circle intersect each other at right angles, then *x* + *y* =

A is a point at a distance 13 cm from the centre O of a circle of radius 5 cm. AP and AQ are the tangents to the circle at P and Q. If a tangent BC is drawn at a point R lying on the minor arc PQ to intersect AP at B and AQ at C, find the perimeter of the ∆ABC.

Two concentric circles are of diameters 30 cm and 18 cm. Find the length of the chord of the larger circle which touches the smaller circle.

*AB* is a chord of a circle with centre *O* , *AOC* is a diameter and *AT* is the tangent at* A* as shown in Fig . 10.70. Prove that \[\angle\]*BAT* = \[\angle\] *ACB*.

Equal circles with centres O and O' touch each other at X. OO' produced to meet a circle with centre O', at A. AC is a tangent to the circle whose centre is O. O'D is perpendicular to AC. Find the value of\[\frac{DO'}{CO}\]

Choose correct alternative answer and fill in the blank.

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.

The point of concurrence of all angle bisectors of a triangle is called the ______.

The circle which passes through all the vertices of a triangle is called ______.

Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.

The length of the longest chord of the circle with radius 2.9 cm is ______.

Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.

The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.

Find the diameter of the circle if the length of a chord is 3.2 cm and itd distance from the centre is 1.2 cm.

In the given figure, chord EF || chord GH. Prove that, chord EG ≅ chord FH. Fill in the blanks and write the proof.

In the given figure, seg MN is a chord of a circle with centre O. MN = 25, L is a point on chord MN such that ML = 9 and d(O,L) = 5. Find the radius of the circle.

**The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,**

find the radius of the circle.

**In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.**

Prove that:

( i ) ΔOPA ≅ ΔOQC

( ii ) ΔBPC ≅ ΔBQA

**Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?**

**Suppose you are given a circle. Describe a method by which you can find the center of this circle.**

In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle. seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:

a. Draw ray CE. It intersects the circle at D.

b. Show that CE = ED.

c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof.

ABC is a right triangle in which ∠B = 90°. If AB = 8 cm and BC = 6 cm, find the diameter of the circle inscribed in the triangle.

In the given figure, the area enclosed between the two concentric circles is 770 cm^{2}. If the radius of the outer circle is 21 cm, calculate the radius of the inner circle.

If O is the centre of the circle, find the value of x in each of the following figures

**Use the figure given below to fill in the blank:**

Diameter of a circle is ______.

**Use the figure given below to fill in the blank:**

If the length of RS is 5 cm, the length of PQ = _______

Draw circle with diameter: 8.4 cm

In above case, measure the length of the radius of the circle drawn.

Draw a circle of radius 4.8 cm and mark its center as P.

(i) Draw radii PA and PB such that ∠APB = 45°.

(ii) Shade the major sector of the circle

Draw a circle of radius 3.6 cm. In the circle, draw a chord AB = 5 cm. Now shade the minor segment of the circle.

Mark two points A and B ,4cm a part, Draw a circle passing through B and with A as a center

Construct a triangle ABC with AB = 4.2 cm, BC = 6 cm and AC = 5cm. Construct the circumcircle of the triangle drawn.

Construct a triangle PQR in which, PQ = QR = RP = 5.7 cm. Draw the incircle of the triangle and measure its radius.

Can the length of a chord of a circle be greater than its diameter ? Explain.

Draw a circle of diameter 7 cm. Draw two radii of this circle such that the angle between these radii is 90°. Shade the minor sector obtained. Write a special name for this sector.

If the radius of a circle is 5 cm, what will its diameter be?

**Draw circle with the radii given below.**

2 cm

**Draw circle with the radii given below.**

3 cm

**Draw a circle with the radii given below.**

4 cm

Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.

In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram |
Points in the interior of the circle |
Points in the exterior of the circle |
Points on the circle |

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre

The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle

Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA

A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord

In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?

Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord

A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is

In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is

AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is

The ratio between the circumference and diameter of any circle is _______

A line segment which joins any two points on a circle is a ___________

The longest chord of a circle is __________

The radius of a circle of diameter 24 cm is _______

A part of circumference of a circle is called as _______

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

15 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

1760 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

24 m |

All the radii of a circle are _______________

The ______________ is the longest chord of a circle

A line segment joining any point on the circle to its center is called the _____________ of the circle

A line segment with its end points on the circle is called a ______________

Twice the radius is ________________

Find the diameter of the circle

Radius = 10 cm

Find the diameter of the circle

Radius = 8 cm

Find the radius of the circle

Diameter = 24 cm

Find the radius of the circle

Diameter = 30 cm

Find the radius of the circle

Diameter = 76 cm

Circles with centres A, B and C touch each other externally. If AB = 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.

In the adjoining figure, seg DE is the chord of the circle with center C. seg CF⊥ seg DE and DE = 16 cm, then find the length of DF?

If O is the center of the circle in the figure alongside, then complete the table from the given information.

The type of arc

Type of circular arc |
Name of circular arc |
Measure of circular arc |

Minor arc | ||

Major arc |

**Given:** A circle inscribed in a right angled ΔABC. If ∠ACB = 90° and the radius of the circle is r.

**To prove:** 2r = a + b – c

In a circle with centre P, chord AB is parallel to a tangent and intersects the radius drawn from the point of contact to its midpoint. If AB = `16sqrt(3)`, then find the radius of the circle

In the figure, O is the center of the circle. Line AQ is a tangent. If OP = 3, m(arc PM) = 120°, then find the length of AP.

Circles with centres A, B and C touch each other externally. If AB = 36, BC = 32, CA = 30, then find the radii of each circle.

In the adjoining figure, Δ ABC is circumscribing a circle. Then, the length of BC is ______

In figure, AB is a chord of the circle and AOC is its diameter such that ∠ACB = 50°. If AT is the tangent to the circle at point A, then ∠BAT is equal to ______.

In the following figure, tangents PQ and PR are drawn to a circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ, then ∠RQS.

A point P is 13 cm from the centre of the circle. The length of the tangent drawn from P to the circle is 12cm. Find the radius of the circle.

In the given figure, AB is the diameter of the circle. Find the value of ∠ACD.

If angle between two tangents drawn from a point P to a circle of radius a and centre O is 60°, then OP = `asqrt(3)`

If a number of circles touch a given line segment PQ at a point A, then their centres lie on the perpendicular bisector of PQ.

Let s denote the semi-perimeter of a triangle ABC in which BC = a, CA = b, AB = c. If a circle touches the sides BC, CA, AB at D, E, F, respectively, prove that BD = s – b.

If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel.

If two chords AB and CD of a circle AYDZBWCX intersect at right angles (see figure), prove that arc CXA + arc DZB = arc AYD + arc BWC = semicircle.

In figure,O is the centre of the circle, ∠BCO = 30°. Find x and y.

In the given figure, O is the centre of the circle. Name all chords of the circle.

In the given figure, O is the centre of the circle. Name a chord, which is not the diameter of the circle.

From the figure, identify three radii.

From the figure, identify a chord.

From the figure, identify two points in the interior.

From the figure, identify a sector.

Is every chord of a circle also a diameter?

Draw any circle and mark

- it's centre
- a radius
- a diameter
- a sector
- a segment
- a point in its interior
- a point in its exterior
- an arc

Say true or false:

Two diameters of a circle will necessarily intersect.

Say true or false:

The centre of a circle is always in its interior.

A figure is in the form of rectangle PQRS having a semi-circle on side QR as shown in the figure. Determine the area of the plot.

A circle of radius 3 cm with centre O and a point L outside the circle is drawn, such that OL = 7 cm. From the point L, construct a pair of tangents to the circle. Justify LM and LN are the two tangents.

If radius of a circle is 5 cm, then find the length of longest chord of a circle.

AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

- Draw the figure using the given information.
- Find the measures of ∠CAT and ∠ABC with reasons.
- Whether ∠CAT and ∠ABC are congruent? Justify your answer.

The circumcentre of a triangle is the point which is ______.