Sum
Factorize the following polynomial.
(x2 – 6x)2 – 8 (x2 – 6x + 8) – 64
Advertisement Remove all ads
Solution
(x2 – 6x)2 – 8 (x2 – 6x + 8) – 64
= (x2 – 6x)2 – 8(x2 – 6x) – 64 – 64
= (x2 – 6x)2 – 8(x2 – 6x) – 128
Let x2 – 6x = z.
`therefore (x^2 - 6x)^2 - 8 (x^2 - 6x) - 128`
`= z^2 - 8z - 128`
`= z^2 - 16 z + 8z - 128`
`= z(z - 16) + 8 (z - 16)`
`= (z - 16) (z +8)`
`= (x^2 - 6x - 16) (x^2 - 6x + 8)` (Replace z = x2 - 6x)
`= (x^2 - 8x + 2x - 16) (x^2 - 4x - 2x + 8)`
`= [x (x - 8) + 2 (x - 8)] [x (x -4) - 2 (x - 4)]`
`= (x - 8) (x + 2) (x - 4) (x -2)`
Concept: Factor Theorem
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads