###### Advertisements

###### Advertisements

Sum

**Factorise completely:** 2a^{2} - 8a - 64

###### Advertisements

#### Solution

2a^{2} - 8a - 64 = 2[a^{2} - 4a - 32]

= 2[a^{2} - 8a + 4a - 32]

= 2[a(a - 8) + 4(a - 8)]

= 2[(a - 8) (a + 4)]

= 2(a - 8)(a + 4)

Concept: Factorising Completely

Is there an error in this question or solution?

#### APPEARS IN

#### RELATED QUESTIONS

**Factorise completely: **2 - 8x^{2 }

**Factorise completely: **8x^{2}y - 18y^{3}

**Factorise completely: **ax^{2} - ay^{2}

**Factorise completely: **16x^{4} - 81y^{4}

**Factorise completely:** x^{2} - y^{2} - 3x - 3y

**Factorise completely:** 3x^{2} + 15x - 72

**Factorise completely:** 5b^{2} + 45b + 90

**Factorise completely:** a^{2} + 2ab + b^{2} - c^{2}

**Factorise completely:** x^{2} + 6xy + 9y^{2} + x + 3y

**Factorise completely:** 4a^{2} -12ab + 9b^{2} + 4a- 6b