#### Question

Find the value of a, if x – 2 is a factor of 2x^{5} – 6x^{4} – 2ax^{3} + 6ax^{2} + 4ax + 8.

#### Solution

f(x) = 2x^{5} – 6x^{4} – 2ax^{3} + 6ax^{2} + 4ax + 8

x – 2 = 0 ⇒ x = 2

Since, x – 2 is a factor of f(x), remainder = 0.

2(2)^{5} – 6(2)^{4} – 2a(2)^{3} + 6a(2)^{2} + 4a(2) + 8 = 0

64 – 96 – 16a + 24a + 8a + 8 = 0

-24 + 16a = 0

16a = 24

a = 1.5

Is there an error in this question or solution?

Advertisement

Advertisement

Find the Value of A, If X – 2 is a Factor of 2x5 – 6x4 – 2ax3 + 6ax2 + 4ax + 8. Concept: Factor Theorem.

Advertisement