Advertisement Remove all ads

Express the following complex numbers in polar form and exponential form: 11+i - Mathematics and Statistics

Sum

Express the following complex numbers in polar form and exponential form:

`1/(1 + "i")`

Advertisement Remove all ads

Solution

Let z = `1/(1 + "i")`

= `(1 - "i")/((1 + "i")(1 - "i"))`

= `(1 - "i")/(1 - "i"^2)`

= `(1 - "i")/(1 - (-1))`   ...[∵ i2 = – 1]

= `(1 - "i")/2`

∴ z = `1/2 - 1/2"i"`

∴ a = `1/2`, b = `(-1)/2`

∴ | z | = r

= `sqrt("a"^2 + "b"^2)`

= `sqrt((1/2)^2 + (-1/2)^2)`

= `sqrt(1/4 + 1/4)`

= `1/sqrt(2)`

Here `(1/2, (-1)/2)` lies in 4th quadrant

θ = amp (z)

= `2pi + tan^-1("b"/"a")`

= `2pi + tan^-1(((-1)/2)/(1/2))`

= 2π + tan–1(–1)

= 2π – tan–1(1)

= `2pi - pi/4`

= `(7pi)/4`

∴ θ = 315° = `(7pi)/4`

∴ polar form of z = r (cos θ + i sin θ)

= `1/sqrt(2)(cos 315^circ +  "i"  sin315^circ)`

= `1/sqrt(2)[cos((7pi)/4) + "i"  sin((7pi)/4)]`

The exponential form of z = re

= `1/sqrt(2)"e"^((7pi)/4"i"`.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×