Advertisement Remove all ads

Express the Following Complex in the Form R(Cos θ + I Sin θ): 1 + I Tan α - Mathematics

Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α

Advertisement Remove all ads

Solution

\[\text{Let } z = 1 + i\tan \alpha \]

\[ \because \tan \alpha\text {  is periodic with period }π. \text { So, let us take } \]

\[\alpha \in [0,\frac{\pi}{2}) \cup ( \frac{\pi}{2}, \pi]\]

\[Case I: \]

\[\text { When } \alpha \in [0, \frac{\pi}{2})\]

\[z = 1 + i\tan \alpha \]

\[ \Rightarrow \left| z \right| = \sqrt{1 + \tan^2 \alpha}\]

\[ = \left| \sec \alpha \right| \left[ \because 0 < \alpha < \frac{\pi}{2} \right]\]

\[ = \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \left| \tan \alpha \right|\]

\[ = \tan \alpha\]

\[ \Rightarrow \beta = \alpha \]

\[\text { As z lies in the first quadrant . Therefore}, \arg(z) = \beta = \alpha\]

\[\text { Thus, z in the polar form is given by } \]

\[z = \sec \alpha \left( \cos\alpha + i\sin \alpha \right)\]

\[\text{Case II }: \]

\[z = 1 + i \tan \alpha \]

\[ \Rightarrow \left| z \right| = \sqrt{1 + \tan^2 \alpha}\]

\[ = \left| \sec \alpha \right| \left[ \because \frac{\pi}{2} < \alpha < \pi \right]\]

\[ = - \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \left| \tan \alpha \right|\]

\[ = - \tan \alpha\]

\[ \Rightarrow \tan \beta = \tan \left( \pi - \alpha \right)\]

\[ \Rightarrow \beta = \pi - \alpha\]

\[\text { As, z lies in the fourth quadrant } . \]

\[ \therefore \arg(z) = - \beta = \alpha - \pi\]

\[\text { Thus, z in the polar form is given by } \]

\[z = - \sec \alpha \left\{ \cos\left( \alpha - \pi \right) + i\sin \left( \alpha - \pi \right) \right\} \]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 13 Complex Numbers
Exercise 13.4 | Q 3.1 | Page 57
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×