Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
Advertisement Remove all ads
Solution
We know that rationalization factor for `sqrt(a^2 + b^2) + a` is `sqrt(a^2 + b^2) - a`. We will multiply numerator and denominator of the given expression `b^2/(sqrt(a^2 + b^2) + a) ` by `sqrt(a^2 + b^2) - a` to get
`b^2/(sqrt(a^2 + b^2) + a) xx (sqrt(a^2 + b^2) - a)/(sqrt(a^2 + b^2) - a) = (b^2(sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2) - a^2)`
`= (b^2 (sqrt(a^2 + b^2) - a))/(a^2 + b^2 - a^2)`
`= (b^2(sqrt(a^2 + b^2) - a))/b^2`
`= sqrt(a^2 + b^2) - a`
Hence the given expression is simplified with rational denominator to `sqrt(a^2 + b^2) - a`
Concept: Operations on Real Numbers
Is there an error in this question or solution?