Explain Vogel’s approximation method by obtaining initial basic feasible solution of the following transportation problem.
Destination | ||||||
D1 | D2 | D3 | D4 | Supply | ||
O1 | 2 | 3 | 11 | 7 | 6 | |
Origin | O2 | 1 | 0 | 6 | 1 | 1 |
O3 | 5 | 8 | 15 | 9 | 10 | |
Demand | 7 | 5 | 3 | 2 |
Solution
Total supply (ai) = 6 + 1 + 10 = 17
Total demand (bj) = 7 + 5 + 3 + 2 = 17
`sum"a"_"i" = sum"b"_"j"`.
So given transportation problem is a balanced problem and hence we can find a basic feasible solution by VAM.
First allocation:
D1 | D2 | D3 | D4 | (ai) | penalty | |
O1 | 2 | 3 | 11 | 7 | 6 | (1) |
O2 | 1 | 0 | 6 | (1)1 | 1/0 | (1) |
O3 | 5 | 8 | 15 | 9 | 10 | (3) |
(bj) | 7 | 5 | 3 | 2/1 | ||
penalty | (1) | (3) | (5) | (6) |
The largest penalty is 6.
So allot min (2, 1) to the cell (O2, D4) which has the least cost in column D4.
Second allocation:
D1 | D2 | D3 | D4 | (ai) | penalty | |
O1 | 2 | (5)3 | 11 | 7 | 6/1 | (1) |
O3 | 5 | 8 | 15 | 9 | 10 | (3) |
(bj) | 7 | 5/0 | 3 | 1 | ||
penalty | (3) | (5) | (4) | (2) |
The largest penalty is 5.
So allot min (5, 6) to the cell (O1, D2) which has the least cost in column D2.
Third allocation:
D1 | D3 | D4 | (ai) | penalty | |
O1 | (1)2 | 11 | 7 | 1/0 | (5) |
O3 | 5 | 15 | 9 | 10 | (4) |
(bj) | 7/6 | 3 | 1 | ||
penalty | (3) | (4) | (2) |
The largest penalty is 5.
So allot min (7, 1) to the cell (O1, D1) which has the least cost in row O1.
Fourth allocation:
D1 | D3 | D4 | (ai) | penalty | |
O3 | (6)5 | 15 | 9 | 10/4 | (4) |
(bj) | 6/0 | 3 | 1 | ||
penalty | – | – | – |
Fifth allocation:
D3 | D4 | (ai) | penalty | |
O3 | (3)15 | (1)9 | 4/3/0 | (6) |
(bj) | 3/0 | 1/0 | ||
penalty | – | – |
The largest penalty is 6.
So allot min (1, 4) to the cell (O3, D4) which has the least cost in row O3.
The balance 3 units is allotted to the cell (O3, D3).
We get the final allocation as given below.
D1 | D2 | D3 | D4 | Supply | |
O1 | (1)2 | (5)3 | 11 | 7 | 6 |
O2 | 1 | 0 | 6 | (1)1 | 1 |
O3 | (6)5 | 8 | (3)15 | (1)9 | 10 |
Demand | 7 | 5 | 3 | 2 |
Transportation schedule:
O1 → D1
O1 → D2
O2 → D4
O3 → D1
O3 → D3
O3 → D4
i.e x11 = 1
x12 = 5
x24 = 1
x31 = 6
x33 = 3
x34 = 1
Total cost is given by = (1 × 2) + (5 × 3) + (1 × 1) + (6 × 5) + (3 × 15) + (1 × 9)
= 2 + 15 + 1 + 30 + 45 + 9
= 102
Thus the optimal (minimal) cost of the given transportation problem by Vogel’s approximation method is ₹ 102.