Explain the Relation between KC and KP.
Solution
Consider a general reversible reaction:
aA(g) + bB(g) ⇌ cC(g) + dD(g)
The equilibrium constant (KP) in terms of partial pressure is given by equation:
`"K"_"P" = (("P"_"C")^"c"("P"_"D")^"d")/(("P"_"A")^"a"("P"_"B")^"b")` .....(1)
For a mixture of ideal gases, the partial pressure of each component is directly proportional to its concentration at constant temperature.
For component A,
PAV = nART
`"P"_"A" = "n"_"A"/"V" xx "RT"`
`"n"_"A"/"V"` is molar concentration of A in mol dm-3
∴ PA = [A]RT where, [A] = `"n"_"A"/"V"`
Similarly, for other components, PB = [B]RT, PC = [C]RT, PD = [D]RT
Now substituting equations for PA, PB, PC, PD in equation (1), we get
`"K"_"P" = (["C"]^"c"("RT")^"c"["D"]^"d"("RT")^"d")/(["A"]^"a"("RT")^"a"["B"]^"b"("RT")^"b")`
∴ `"K"_"P" = (["C"]^"c" ["D"]^"d"("RT")^"c+d")/(["A"]^"a"["B"]^"b"("RT")^"a + b")`
∴ `"K"_"P" =(["C"]^"c" ["D"]^"d")/(["A"]^"a"["B"]^"b") xx ("RT")^(("c + d")-("a + b"))`
∴ `"K"_"P" =(["C"]^"c" ["D"]^"d")/(["A"]^"a"["B"]^"b") xx ("RT")^(Delta"n")`
∴ But, `"K"_"C" =(["C"]^"c" ["D"]^"d")/(["A"]^"a"["B"]^"b")`
`"K"_"P" = "K"_"C"("RT")^(Delta"n")`
where Δn = (number of moles of gaseous products) – (number of moles of gaseous reactants) in the balanced chemical equation.
R = 0.08206 L atm K–1 mol–1