Advertisement Remove all ads

Expand 2 X 3 + 7 X 2 + X − 1 in Powers of X - 2 - Applied Mathematics 1

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Expand `2x^3+7x^2+x-1` in powers of x - 2

Advertisement Remove all ads

Solution

Let  `f(x) =2x^3+7x^2+x-1`

Here a = 2

`f(x) =2x^3+7x^2+x-1` 𝒇(𝟐)=𝟒𝟓
`f'(x) =6x^2+14x+1` 𝒇′(𝟐)=𝟓𝟑
`f''(x) =12x+14` 𝒇′′(𝟐)=𝟑𝟖

𝒇′′′(𝒙)=𝒇′′′(𝟐)=𝟏𝟐

Taylor’s series is :

`f(x)=f(a)+(x-a)f'(a)+(x-a)^2/(2!)f''(a)+....`

`2x^3+7x^2+x-1=45+(x-2)53+(x-2)^2/(2!)38+(x-a)^3/(3!)12`

`2x^3+7x^2+x-1=45+53(x-2)+19(x-2)^2+2(x-2)^3`

Concept: Expansion of sinn θ, cosn θ in terms of sines and cosines of multiples of θ
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×