Advertisement Remove all ads

Examine, Whether the Following Number Are Rational Or Irrational: `(Sqrt2+Sqrt3)^2` - Mathematics

Examine, whether the following number are rational or irrational:

`(sqrt2+sqrt3)^2`

Advertisement Remove all ads

Solution

Let `x=(sqrt2+sqrt3)^2`be rational number

Using the formula (a + b)2 = a2 + b2 + 2ab

`rArrx=(sqrt2)^2+(sqrt3)^2+2(sqrt2)(sqrt3)`

`rArrx=2+3+2sqrt6`

`rArrx=5+2sqrt6`

`rArr(x-5)/2=sqrt6`

`rArr(x-5)/2` is a rational number

`rArrsqrt6` is a rational number

But we know that `sqrt6` is an irrational number

So, we arrive at a contradiction

So `(sqrt2+sqrt3)^2` is an irrational number.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Mathematics for Class 9
Chapter 1 Number Systems
Exercise 1.4 | Q 3.08 | Page 31
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×