#### Question

Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`

clickto share

#### Solution

`int_0^4(|x|+|x-2|+|x-4|)dx`

`I=int_0^4f(x)dx=int_0^2f(x)dx+int_2^4f(x)dx`

`I=int_0^2(x+2-x+4-x)dx+int_2^4(x+x-2+4-x)dx`

`I=int_0^2(x+2-x+4-x)dx+int_2^4(x+x-2+4-x)dx`

`I=int_0^2(6-x)dx+int_2^4(x+2)dx=[6x-x^2/2]_0^2+[x^2/2+2x]_2^4=[12-1]+[8-2+(8-4)]=20`

Is there an error in this question or solution?

#### Related QuestionsVIEW ALL [71]

#### Reference Material

Solution for question: Evaluate : ∫40(|x|+|x−2|+|x−4|)dx concept: Evaluation of Definite Integrals by Substitution. For the courses CBSE (Science), CBSE (Commerce), CBSE (Arts), PUC Karnataka Science, HSC Science (Electronics), HSC Science (Computer Science), HSC Science (General) , HSC Arts, ISC (Science), ISC (Arts), ISC (Commerce)