Advertisement Remove all ads

Evaluate ∫ ∫ ∫ ( X + Y + Z ) D X D Y D Z Over the Tetrahedron Bounded by the Planes X = 0, Y = 0, Z = 0 and X + Y + Z = 1. - Applied Mathematics 2

Evaluate `int int int (x+y+z)` `dxdydz ` over the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1.

Advertisement Remove all ads

Solution

`I=int_(x=0)^1 int_(y=0)^(1-x) int_(z=0)^(1-x-y) (x+y+z)dzdydx` 

`I= int_(x=0)^1 int_(y=0)^(1-x) [(x+y+z)^2/2]^(1-x-y) dydz` 

`I=1/2 int_(x=0)^1 int_(y=0)^(1-x) [1-(x-y)^2]dydx` 

`I=1/2 int_(x=0)^1 [y-(x+y)^2/2]^(1-x) dx` 

`I=1/2int_(x=0)^1 [(1-x)-1/3+x^3/3]dx` 

`I=1/2 [(2x)/3+x^2/2+x^4/12]_0^1` 

`I= 1/2. 3/12=1/8` 

∴`I=1/8`

Concept: Linear Differential Equation with Constant Coefficient‐ Complementary Function
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×