Advertisement
Advertisement
Advertisement
Sum
Evaluate: `int_0^x (xtan x)/(sec x + tan x) dx`
Advertisement
Solution
`I = int_0^pi (x tan x)/(sec x + tan x) dx` ......(1)
using `int_0^a f(x)dx = int_0^a f(a-x)dx`
`I = int_0^pi ((pi-x) tanpi -x)/(sec(pi-x)+ tan (pi -x))`
`I = int_0^pi ((pi - x) tan x) /(sec x + tan x )dx` .....(2 ) `{
`{(sec(pi -x)= -secx),(tan (pi-x)=- tan x):}}`
Adding (1) and (2) we get
`therefore 2I = pi int_0^pi (tanx)/(secx + tan x)dx`
`2I = pi int_0^pi (secx - tan x)dx)`
`2I = pi int_0^pi (secx - tan x-tan^2x)dx)`
`2I = pi int_0^pi (secx - tan x-tan^2x+1)dx)`
`2I = pi(secx - tanx + x)_0^pi`
`2I = pi int_0^pi (sec pi - tan pi+pi) - (sec0 - tan 0+0)`
`I = pi/2 (-1 -0 + pi -(1 - 0 + 0) )`
`I = pi/2 (-1+ pi -1)`
`I = pi/2 (pi - 2)= pi (pi/2 - 1)`
Concept: Introduction of Integrals
Is there an error in this question or solution?