Maharashtra State BoardHSC Commerce 11th
Advertisement Remove all ads

Evaluate the following Limits: limx→0[x(6x-3x)(2x-1)⋅log(1+x)] - Mathematics and Statistics

Sum

Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`

Advertisement Remove all ads

Solution

`lim_(x -> 0)(x(6^x - 3^x))/((2^x - 1)*log(1 + x))`

= `lim_(x -> 0)(x(3^x*2^x - 3^x))/((2^x - 1)*log(1 + x))`

= `lim_(x -> 0) (x*3^x(2^x - 1))/((2^x - 1)*log(1 + x)`

= `lim_(x -> 0) (x*3^x)/(log (1 + x))    ...[("As"  x -> 0","  2^x -> 2^0),("i.e." 2^x -> 1  therefore 2^x ≠ 1),(therefore 2^x - 1 ≠ 0)]`

= `lim_(x -> 0) (3^x)/((log(1 + x))/x`

= `(lim_(x -> 0) 3^x)/(lim_(x -> 0) (log(1 + x))/x`

= `3^0/1       ...[lim_(x -> 0) (log(1 + x))/x = 1]`

= 1

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) 11th Standard Maharashtra State Board
Chapter 7 Limits
Miscellaneous Exercise 7 | Q II. (13) | Page 106
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×