Maharashtra State BoardHSC Arts 12th Board Exam
Advertisement Remove all ads

Evaluate the following integrals as limit of a sum : ∫02(3x2−1)⋅dx - Mathematics and Statistics

Sum

Evaluate the following integrals as limit of a sum : \[\int\limits_0^2 (3x^2 - 1)\cdot dx\]

Advertisement Remove all ads

Solution

Let f(x) = 3x2 – 1, for 0 ≤ x ≤ 2.
DIvide the closed interval [0, 2] int n subintervals each of length h at the points.
0, 0 + h, 0 + 2h, ..., 0 + rh, .., 0 + nh = 2
i.e. 0, h, 2h, ..., rh, ..., nh = 2

∴ h = `(2)/n  "and as " n -> oo, h -> 0`
Here, a = 0
∴ f(a + rh) = f(0 + rh) = f(rh) = 3(rh)2 – 1 = 3r2h2 – 1

∵ \[\int\limits_a^b f(x)\cdot dx = \lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} f(a+rh)\cdot h\]

= \[\int\limits_0^2 (3x^2 - 1)\cdot dx = \lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} (3r^2h^2 - 1)\cdot h\]

= \[\lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} (3r^2 ×\frac{4}{n^2} - 1)\cdot \frac{2}{n}   ...[∵ h = \frac{2}{n}]\]

= \[\lim\limits_{n\to \infty}\displaystyle\sum_{r=1}^{n} (\frac{24r^2}{n^3} - \frac{2}{n})\]

= \[\lim\limits_{n\to \infty}[\frac{24}{n^3} \displaystyle\sum_{r=1}^{n} r^2 - \frac{2}{n} \displaystyle\sum_{r=1}^{n} 1]\]

= \[\lim\limits_{n\to \infty}[\frac{24}{n^3} \cdot \frac{n(n + 1)(2n + 1)}{6} - \frac{2}{n} \cdot n]\]

= \[\lim\limits_{n\to \infty}[4 \cdot ( \frac{n + 1}{n})(\frac{2n + 1}{n}) - 2]\]

= \[\lim\limits_{n\to \infty}[4(1 + \frac{1}{n})(2 + \frac{1}{n}) - 2]\]

= \[4(1 + 0)(2 + 0) - 2   ...[∵ \lim\limits_{n\to \infty} \frac{1}{n} = 0]\]

= 8 – 2 = 6.

Concept: Definite Integral as Limit of Sum
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×