Maharashtra State BoardHSC Commerce 12th Board Exam
Advertisement Remove all ads

Evaluate the following integrals : ∫12x3-x+x⋅dx - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`

Advertisement Remove all ads

Solution

Let I = `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`        ...(i)

= `int_1^2 sqrt(1 + 2 - x)/(sqrt(3 - (1 + 2 - x)) + sqrt(1 + 2 - x))*dx       ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`

∴ I = `int_1^2 sqrt(3 - x)/(sqrt(x) + sqrt(3 - x))*dx`           ...(ii)

Adding (i)  and (ii), we get

2I = `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx  + int_1^2 sqrt(3 - x)/(sqrt(x) + sqrt(3 - x))*dx`

= `int_1^2 (sqrt(x) + sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))*dx`

= `int_1^2 1*dx`

= `[x]_1^2`
∴ 2I = 2 – 1 = 1
∴ I = `(1)/(2)`.

Concept: Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×