Advertisement
Advertisement
Sum
Evaluate the following : `int_((-pi)/2)^(pi/2) log((2 + sinx)/(2 - sinx))*dx`
Advertisement
Solution
Let I = `int_((-pi)/2)^(pi/2) log((2 - sinx)/(2 + sinx))*dx`
Let f(x) = `log((2 - sinx)/(2 + sinx))`
∴ f(– x)= `log[(2 - sin(-x))/(2 + sin(-x))]`
= `log((2 + sinx)/(2 - sinx))`
= `-log((2 - sinx)/(2 + sinx))`
= – f(x)
∴ f is an odd function.
∴ `int_((-pi)/2)^(pi/2) f(x)*dx` = 0
∴ `int_((-pi)/2)^(pi/2)log((2 - sinx)/(2 + sinx))*dx` = 0.
Concept: Fundamental Theorem of Integral Calculus
Is there an error in this question or solution?