Evaluate the following : 14x2-20x+17 - Mathematics and Statistics

Advertisements
Advertisements
Sum

Evaluate the following : `(1)/(4x^2 - 20x + 17)`

Advertisements

Solution

`int (1)/(4x^2 - 20x + 17).dx`

= `(1)/(4) int (1)/(x^2 - 5x + 17/4).dx`

= `(1)/(4) int (1)/((x^2 - 5x + 25/4) - (25)/(4) + (17)/(4)).dx`

= `(1)/(4) int (1)/((x - 5/2)^2 - (sqrt(2))^2).dx`

= `(1)/(4) xx (1)/(2sqrt(2))log|(x - 5/2 - sqrt(2))/(x - 5/2 + sqrt(2))| + c`

= `(1)/(8sqrt(2))log |(2x - 5 - 2sqrt(2))/(2x - 5 + 2sqrt(2))| + c`.

  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (B) [Page 123]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) 12th Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.12 | Page 123

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int 1/(x(x-1)) dx`


Solve: dy/dx = cos(x + y)


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int x \sin^3 x\ dx\]

`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


`int logx/(log ex)^2*dx` = ______.


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/("x"("x"^6 + 1))` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int (sin4x)/(cos 2x) "d"x`


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int logx/x  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int cot^2x  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate `int(3x^2 - 5)^2  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int (cos x)/(1 - sin x) "dx" =` ______.


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int cos^3x  dx` = ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int1/(x(x - 1))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate:

`int sin^2(x/2)dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Share
Notifications



      Forgot password?
Use app×