Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 12
Advertisement Remove all ads

Evaluate the following. ∫13x2-5 dx - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx

Advertisement Remove all ads

Solution

Let I = `int 1/(sqrt(3"x"^2 - 5))` dx

`= 1/sqrt3 int 1/sqrt("x"^2 - 5/3)` dx

`= 1/sqrt3 int 1/(sqrt ("x"^2 - (sqrt5/sqrt3)^2))` dx

`= 1/sqrt3 log |"x" + sqrt("x"^2 - (sqrt5/sqrt3)^2)| + "c"_1`

`= 1/sqrt3 log |"x" + sqrt("x"^2 - 5/3)| + "c"_1`

`= 1/sqrt3 log |(sqrt3"x" + sqrt(3"x"^2 - 5))/sqrt3| + "c"_1`

`= 1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| - 1/sqrt3 log sqrt3 + "c"_1`

∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| + "c"`,
where c = `"c"_1 - 1/sqrt3 log sqrt3`

Notes

[Note: Answer in the textbook is incorrect.]

Concept: Methods of Integration: Integration by Substitution
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×