Advertisement
Advertisement
Advertisement
Sum
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Advertisement
Solution
Let I = `int 1/(sqrt(3"x"^2 - 5))` dx
`= 1/sqrt3 int 1/sqrt("x"^2 - 5/3)` dx
`= 1/sqrt3 int 1/(sqrt ("x"^2 - (sqrt5/sqrt3)^2))` dx
`= 1/sqrt3 log |"x" + sqrt("x"^2 - (sqrt5/sqrt3)^2)| + "c"_1`
`= 1/sqrt3 log |"x" + sqrt("x"^2 - 5/3)| + "c"_1`
`= 1/sqrt3 log |(sqrt3"x" + sqrt(3"x"^2 - 5))/sqrt3| + "c"_1`
`= 1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| - 1/sqrt3 log sqrt3 + "c"_1`
∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| + "c"`,
where c = `"c"_1 - 1/sqrt3 log sqrt3`
Notes
The answer in the textbook is incorrect.
Is there an error in this question or solution?