Evaluate the following : ∫01(11+x2)sin-1(2x1+x2)⋅dx - Mathematics and Statistics

Advertisements
Advertisements
Sum

Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`

Advertisements

Solution

Let I = `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`

Put x = tan t, i.e. t = tan–1x
∴ dx = sec2t dt

When x = 1, t = tan–11 = `pi/(4)`

When x = 0, t = tan–1 0 = 0

∴ I = `int_0^(pi/4) (1/(1 + tan^2t))sin^-1 ((2tan t)/(1 + tan^2t))sec^2t*dt`

= `int_0^(pi/4) (1)/(sec^2t) sin^-1 (sin 2t) sec^2t*dt`

= `int_0^(pi/4) 2t*dt`

= `2int_0^(pi/4)t*dt`

= `2[(t^2)/2]_0^(pi/4)`

= `2[pi/(32) - 0]`

= `pi^2/(16)`.

Concept: Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) 12th Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.01 | Page 176

RELATED QUESTIONS

Prove that `int 1/(a^2 - x^2) dx = 1/"2a" log|(a +x)/(a-x)| + c`


 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate : `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives :

`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3)*dx` =


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Evaluate the following integrals : `int_0^1 x(1 - x)^5 *dx`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Solve the following.

`int_1^3 x^2 log x dx `


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Share
Notifications



      Forgot password?
Use app×