Advertisement Remove all ads

Evaluate the following : ∫01(11+x2)sin-1(2x1+x2)⋅dx - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`

Advertisement Remove all ads

Solution

Let I = `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`

Put x = tan t, i.e. t = tan–1x
∴ dx = sec2t dt

When x = 1, t = tan–11 = `pi/(4)`

When x = 0, t = tan–1 0 = 0

∴ I = `int_0^(pi/4) (1/(1 + tan^2t))sin^-1 ((2tan t)/(1 + tan^2t))sec^2t*dt`

= `int_0^(pi/4) (1)/(sec^2t) sin^-1 (sin 2t) sec^2t*dt`

= `int_0^(pi/4) 2t*dt`

= `2int_0^(pi/4)t*dt`

= `2[(t^2)/2]_0^(pi/4)`

= `2[pi/(32) - 0]`

= `pi^2/(16)`.

Concept: Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) 12th Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.01 | Page 176
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×