Advertisement Remove all ads

Evaluate the following : ∫0π (sin-1x+cos-1x)3sin3x⋅dx - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`

Advertisement Remove all ads

Solution

Let I = `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`

We know that, sin–1x + cos–1x = `pi/(2)`
and
sin 3x = 3 sin x – 4 sin3x

∴ 4sin3x = 3 sin x – sin 3x

∴ sin3x = `3/4 sinx - 1/4 sin3x`

∴ I = `int_0^pi (pi/2)^3[3/4 sin x - 1/4 sin 3x]*dx`

= `pi^3/(8) xx 3/4 int_0^pi sin x*dx - pi^2/(8) xx 1/4 int_0^pi sin3x`

= `(3pi^3)/(32) [- cos pi - ( - cos 0)] - pi^3/(32)[- (cos 3pi)/(3) - ((- cos0)/3)]`

= `(3pi^3)/(32)[1 + 1] - pi^3/(32)[1/3 + 1/3]`

= `(6pi^3)/(32) - (2pi^3)/(96)`

= `(18pi^3 - 2pi^3)/(96)`

= `(16pi^3)/(96)`

= `pi^3/(6)`.

Concept: Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) 12th Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.08 | Page 176
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×