Evaluate: (Tan 65°)/(Cot 25°) - Mathematics

Advertisements
Advertisements
Sum

Evaluate:
`(tan 65°)/(cot 25°)`

Advertisements

Solution

`(tan 65°)/(cot 25°)`

= `(tan  90° - 25°)/(cot 25°)`     ...( tan(90°θ) = cotθ )

= `( cot 25° )/( cot 25°)`

= 1

  Is there an error in this question or solution?
2018-2019 (March) 30/4/3

RELATED QUESTIONS

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


 Evaluate sin25° cos65° + cos25° sin65°


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove.
`(1 + sin"A")/(1 - sin"A") = ("cosec"  "A" + 1)/("cosec"  "A" - 1`


Prove.
(cosec A - sin A) (sec A - cos A) (tan A + cot A) = 1


Prove.
`cot^2A/(cosecA+1)^2=(1-sinA)/(1+sinA)`


Prove.
`sqrt((1-sinA)/(1+sinA))=cosA/(1+sinA)`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


Write the value of tan10° tan 20° tan 70° tan 80° .


Find the value of sin ` 48° sec 42° + cos 48°  cosec 42°`

 


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


From the figure find the value of sinθ.


Simplify : 2 sin30 + 3 tan45.


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Choose the correct alternative:

cos 45° = ?


Choose the correct alternative:

Which is not correct formula?


(sec θ + tan θ) . (sec θ – tan θ) = ?


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


If cos θ = `24/25`, then sin θ = ?


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that cot2θ – tan2θ = cosec2θ – sec2θ 


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


`1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications



      Forgot password?
Use app×