Evaluate `Lim _(x→0) (cot x)^sinx.`

Advertisement Remove all ads

#### Solution

Let` L= Lim _(x→0) (cot x)^sinx`

∴` logl=log{lim_(x→0)(cot x)^sinx}`

=`lim_(x→0){log(cotx)^sinx}`

=`lim_(x→0)sinx.log(cot x)`

=`lim_(x→0) log(cot x)/(cosec x)` `(∞/∞)`

=`lim_(x→0) (1/(cotx) .-cosec^2x)/(-cosec x cot x)` (L’ Hospital’s Rule)

=` Lim_x→0 tanx. 1/sin x. tan x`

=` Lim_x→0 tanx . 1/sin x. sin x/cos x`

= `tan o xx 1/cos 0`

∴ `log L = 0 `

∴ `L= e^0`

∴` Lim_x→0 (cot x)^sin x=1`

Concept: Expansion of 𝑒^𝑥 , sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x), log(1+x), 𝑠𝑖𝑛−1 (𝑥),𝑐𝑜𝑠−1 (𝑥),𝑡𝑎𝑛−1 (𝑥)

Is there an error in this question or solution?

Advertisement Remove all ads

#### APPEARS IN

Advertisement Remove all ads

Advertisement Remove all ads