Evaluate `Lim _(x→0) (cot x)^sinx.`
Advertisement Remove all ads
Solution
Let` L= Lim _(x→0) (cot x)^sinx`
∴` logl=log{lim_(x→0)(cot x)^sinx}`
=`lim_(x→0){log(cotx)^sinx}`
=`lim_(x→0)sinx.log(cot x)`
=`lim_(x→0) log(cot x)/(cosec x)` `(∞/∞)`
=`lim_(x→0) (1/(cotx) .-cosec^2x)/(-cosec x cot x)` (L’ Hospital’s Rule)
=` Lim_x→0 tanx. 1/sin x. tan x`
=` Lim_x→0 tanx . 1/sin x. sin x/cos x`
= `tan o xx 1/cos 0`
∴ `log L = 0 `
∴ `L= e^0`
∴` Lim_x→0 (cot x)^sin x=1`
Concept: Expansion of 𝑒^𝑥 , sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x), log(1+x), 𝑠𝑖𝑛−1 (𝑥),𝑐𝑜𝑠−1 (𝑥),𝑡𝑎𝑛−1 (𝑥)
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads