Advertisement Remove all ads
Advertisement Remove all ads
Sum
Evaluate I = `int_0^1 int_0^(sqrt(1+x^2)) (dx.dy)/(1+x^2+y^2)`
Advertisement Remove all ads
Solution
I = `int_0^1 int_0^(sqrt(1+x^2)) (dx.dy)/(1+x^2+y^2)`
I= `int_0^1 1/(sqrt(1+x^2)) [tan^(-1) y/sqrt(1+x^2)]_0^sqrt(1+x^2) dx`
`therefore "I" = int_0^1 pi/4 1/sqrt(1+x^2) dx `
`therefore "I"=pi/4[log(x+sqrt(1+x^2))]_0^1`
`therefore "I" =pi/4log(1+sqrt2)`
Concept: Double Integration‐Definition
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads