Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Advertisement Remove all ads
Solution
\[S_{11} = \sum\nolimits_{n = 1}^{11} \left( 2 + 3^n \right)\]
\[ \Rightarrow S_{11} = \sum\nolimits_{n = 1}^{11} 2 + \sum\nolimits_{n = 1}^{11} 3^n \]
\[ \Rightarrow S_{11} = 2 \times 11 + \left( 3 + 3^2 + 3^3 + . . . + 3^{11} \right)\]
\[ = 22 + 3\left( \frac{3^{11} - 1}{3 - 1} \right) \]
\[ = 22 + \left( \frac{177147 - 1}{2} \right)\]
\[ = 22 + 265719 \]
\[ = 265741\]
Concept: Geometric Progression (G. P.)
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads