Sum
Evaluate: `int "e"^"x"/sqrt("e"^"2x" + 4"e"^"x" + 13)` dx
Advertisement Remove all ads
Solution
Let I = `int "e"^"x"/sqrt("e"^"2x" + 4"e"^"x" + 13)` dx
`= int "e"^"x"/sqrt(("e"^"x")^2 + 4"e"^"x" + 13)` dx
Put ex = t
∴ ex dx = dt
∴ I = `"dt"/(sqrt("t"^2 + 4"t" + 13))`
`= int 1/sqrt("t"^2 + 4"t" + 4 - 4 + 13)` dt
`= int 1/(sqrt(("t + 2")^2 + 9))` dt
`= int 1/(sqrt(("t" + 2)^2 + (3)^2))` dt
`= log |"t" + 2 + sqrt(("t" + 2)^2 + (3)^2)|` + c
`= log |"t" + 2 + sqrt("t"^2 + 4"t" + 13)|`
∴ I = `log |"e"^"x" + 2 + sqrt("e"^"2x" + 4"e"^"x" + 13)|`
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads