Evaluate: ∫eax⋅cos(bx+c)dx - Mathematics and Statistics

Advertisements
Advertisements
Sum

Evaluate:

`int e^(ax)*cos(bx + c)dx`

Advertisements

Solution

Let I = `int e^(ax)cos(bx + c)dx`   ....(1)

Integrating by parts

I = `cos(bx + c) int e^(ax)dx - int(int e^(ax)dx*d/dx cos(bx + c))dx`

= `cos(bx + c)*e^(ax)/a - int e^(ax)/a(-sin(bx + c)b)dx`

= `e^(ax)/a cos(bx + c) + b/a int e^(ax)*sin(bx + c)dx`

= `e^(ax)/a cos(bx + c) + b/a[sin(bx + c) int e^(ax)dx - int(int e^(ax)dx d/dx sin(bx + c))dx]`

= `e^(ax)/acos(bx + c) + b/a[e^(ax)/a sin(bx + c) - int e^(ax)/a (cos(bx + c)b)dx]`

= `e^(ax)/a cos(bx + c) + b/a^2 e^(ax) sin(bx + c) - b^2/a^2 int e^(ax) cos(bx + c)dx`

∴ I = `e^(x)/a cos(bx + c) + b/a^2 e^(ax) sin(bx + c) - b^2/a^2*I`  ....[From (1)]

∴ `I + b^2/a^2I = e^(ax)/a cos(bx + c) + b/a^2 e^(ax) sin(bx + c)`

∴ `I((a^2 + b^2))/a^2 = e^(ax) [(cos(bx + c))/a + (bsin(bx + c))/a^2]`

∴ I = `e^(ax)/(a^2 + b^2)[acos(bx + c) + bsin(bx + c)] + c`

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the functions `x^2e^x`


Integrate the functions x log 2x


Integrate the functions x sin– 1x


Integrate the functions x tan–1 x


Integrate the functions x cos–1 x


Integrate the functions `(x cos^(-1) x)/sqrt(1-x^2)`


Integrate the functions tan–1x


Integrate the functions (x2 + 1) log x


Integrate the functions ex (sinx + cosx)


Integrate the functions `(xe^x)/(1+x)^2`


Integrate the functions e2x sin x


Integrate the functions `sin^(-1) ((2x)/(1+x^2))`


Choose the correct answer `intx^2 e^(x^3) dx` equals

(A) `1/3 e^(x^3) + C`

(B) `1/3 e^(x^2) + C`

(C) `1/2 e^(x^3) +C`

(D) `1/3 e^(x^2) + C`


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : `e^(sin^-1x).[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : e2x sin x cos x


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(5 - 16"x"^2)`


`int (sinx)/(1 + sin x)  "d"x`


`int 1/(4x + 5x^(-11))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int sin4x cos3x  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


Choose the correct alternative:

`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


∫ log x · (log x + 2) dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int e^x.sin2xdx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int(logx)^2dx` equals ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int1/(x+sqrt(x))  dx` = ______


Evaluate `int(1 + x + (x^2)/(2!))dx`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int e^(logcosx)dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate: `int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Share
Notifications



      Forgot password?
Use app×