Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Advertisement Remove all ads
Solution
`I=int(sqrt(cotx)+sqrt(tanx))dx`
`=int(sqrt(tanx)(1+cotx))dx`
`Let tanx=t^2`
Differentiating both sides w.r.t. x, we get
`sec^2 x dx=2t dt`
`=> dx=(2tdt)/(1+t^4)`
`therefore I=intt(1+1/t^2)xx(2t)/(1+t^4)dt`
`=2int(t^2+1)/(t^4+1)dt`
`=2int(1+1/t^2)/(t^2+1/t^2)dt`
`=2int(1+1/t^2)/((t-1/t)^2+2)dt`
`Let (t−1)/t=y`
`=>(1+1/t^2)dt=dy`
`therefore I=2int 1/(y^2+(sqrt2)^2) dy`
`=2xx1/sqrt2 tan^-1(y/sqrt2)+C`
`=sqrt2 tan^-1 (t-1/t)/sqrt2+C`
`=sqrt2 tan^-1 ((t^2-1)/(sqrt2t))+C`
`=sqrt2 tan^-1((tanx-1)/sqrt(2tanx))+C`
Concept: Methods of Integration: Integration by Substitution
Is there an error in this question or solution?