Evaluate: ∫ 5 1 { | X − 1 | + | X − 2 | + | X − 3 | } D X . - Mathematics

Advertisements
Advertisements
Sum

Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.

Advertisements

Solution

= `int_1^5 {| x - 1| + | x - 2| + |x - 3|} dx`

= `int_1^5 (x - 1)dx + int_1^2 (2 - x)dx + int_2^5 (x - 2) dx + int_1^3 (3 - x) dx + int_3^5 ( x - 3) dx`

= `[x^2/2 - x]_1^5 + [2x - x^2/2]_1^2 + [x^2/2 - 2x]_2^5 + [3x - x^2/2]_1^3 + [x^2/3 - 3x]_3^5`

= 17

  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 E

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


 

find `∫_2^4 x/(x^2 + 1)dx`

 

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integrals in using substitution 

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integrals in using substitution

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


if `f(x) = int_0^pi t sin t dt`, then f' (x) is

A. cos x + x sin x

B. x sin x

C. x cos x

D. sin x cos x


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


Find: `int (dx)/sqrt(3 - 2x - x^2)`


`int_0^1 x^2e^x dx` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications



      Forgot password?
Use app×