Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Advertisement Remove all ads
Solution
Let `I = ∫_(π/3)^(π/6)1/(1 +sqrt(cotx)dx`
`=int_(pi/6)^(pi/3)1/(1+(sqrt(cosx)/sqrtsinx))dx`
`=int_(pi/6)^(pi/3)1/(sqrtsinx+(sqrt(sinx)+sqrtcosx))dx...(1)`
`now,I=int_(pi/6)^(pi/3)(sqrt(sin(pi/2-x)))/(sqrt(sin(pi/2-x))+sqrt(cos(pi/2-x)))dx .................(int_a^bf(X)dx=int_a^bf(b+a-x)dx)`
`=int_(pi/6)^(pi/3)(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx`
Adding (1) and (2), we get
`2I=int_(pi/6)^(pi/3)(sqrt(sinx)+sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx`
`2I=int_(pi/6)^(pi/3)dx`
`2I=[x]_(pi/6)^(pi/3)`
`2I=pi/3-pi/6`
`2I=pi/6`
`I=pi/12`
Concept: Integration Using Trigonometric Identities
Is there an error in this question or solution?