Evaluate ∫23x(x+2)(x+3) dx - Mathematics and Statistics

Advertisements
Advertisements
Sum

Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`

Advertisements

Solution

Let I =  `int_2^3 x/((x + 2)(x + 3))  "d"x`

Let `x/((x + 2) x + 3) = "A"/(x + 2) + "B"/(x + 3)`  .....(i)

∴ x = A(x + 3) + B(x + 2)   ......(ii)

Putting x = – 3 in (ii), we get

– 3 = – B

∴ B = 3

Putting x = – 2 in (ii), we get

– 2 = A

∴ A = – 2

From (i), we get

`x/((x + 2)(x + 3)) = (-2)/(x + 2) + 3/(x + 3)`

∴ I = `int_2^3[(-2)/(x + 2) + 3/(x + 3)]  "d"x`

= `-2 int_2^3 1/(x + 2)  "d"x + 3 int_2^3 1/(x + 3)  "d"x`

= `-2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`

= – 2(log 5 – log 4) + 3(log 6 –  log 5)

= `- 2 log(5/4) + 3 log(6/5)`

= `3 log(6/5) - 2log(5/4)`

= `log (6/5)^3 - log(5/4)^2`

= `log(216/125) - log(25/16)`

= `log(216/125 xx 16/25)`

∴ I = `log(3456/3125)`

Concept: Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 1.6: Definite Integration - Q.5

RELATED QUESTIONS

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_((-pi)/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate : `int_0^1 sqrt((1 - x)/(1 + x))*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_((-pi)/2)^(pi/2) log((2 + sinx)/(2 - sinx))*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Choose the correct option from the given alternatives :

`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3)*dx` =


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^pi x/(1 + sin^2x)*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite integrals: `int_1^3 logx.dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Solve the following.

`int_1^3x^2 logx dx`


`int_0^1 1/(2x + 5)dx` = ______


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate:

`int_0^1 |x| dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Solve the following.

`int_1^3 x^2 log x  dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


The principle solutions of the equation cos θ = `1/2` are ______.


If `int_((-pi)/4) ^(pi/4) x^3 . sin^4 x  dx` = k then k = ______.


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Share
Notifications



      Forgot password?
Use app×