Advertisement Remove all ads

Evaluate : 2^N Xx 6^(M + 1 ) Xx 10^( M - N ) Xx 15^(M + N - 2)/4^M Xx 3^(2m + N) Xx 25^(M - 1) - Mathematics

Sum

Evaluate :
`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`

Advertisement Remove all ads

Solution

`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`

= `[2^n xx 6^m xx 6 xx 10^m xx 10^(-n) xx 15^m xx 15^n xx 15^(-2 )]/[4^m xx (3^2)^m xx 3^n xx 25^m xx 25^-1 ]`

= `[( 2 xx 1/10 xx 15)^n xx ( 6 xx 10 xx 15 )^m xx 6 xx 1/15^2 ]/[ 3^n xx ( 4 xx 3^2 xx 25 )^m xx 1/25 ]`

= `[ 3^n xx 900^m xx 6/225]/[ 3^n xx 900^m xx 1/25]`

= `6/225 xx 25/1`

= `6/9`

= `2/3`

Concept: Simplification of Expressions
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Selina Concise Mathematics Class 9 ICSE
Chapter 7 Indices (Exponents)
Exercise 7 (C) | Q 13 | Page 101
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×