Advertisement Remove all ads
Advertisement Remove all ads
Evaluate : `int_1^2 1/((x+1)(x+3)) dx`
Advertisement Remove all ads
Solution
`int_1^2 1/((x+1)(x+3)) dx`
= `1/2int_1^2(1/(x+1)-1/(x+3))dx`
=`1/2[{log(x+1)}_1^2-{log(x+3)}_1^2]`
=`1/2[(log)3-log2)-(log 5-log4)]`
=`1/2(log3+log4)-(log2+log5)`
=`1/2[log12-log10]`
=`(1/2)log (12/10)`
∴`int_1^2 1/((x+1)(x+3))dx=1/2 log (6/5)`
Concept: Maxima and Minima
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads