Advertisement Remove all ads

Evaluate ∫ a √ 2 0 ∫ √ a 2 − Y 2 Y Log ( X 2 + Y 2 ) Dxdy by Changing to Polar Coordinates . - Applied Mathematics 2

Evaluate `int_0^(a/sqrt2) int_y^(sqrt(a2-y^2)) log (x^2+y^2) "dxdy by changing to polar Coordinates".` 

Advertisement Remove all ads

Solution

let I =`int_0^(a/sqrt2) int_y^(sqrt(a2-y^2)) log (x^2+y^2) `

Region of integration :`  y<=x<= sqrt(a^2-y^2)` 

                                    `0<= y <= a/sqrt2` 

The line x=y is inclined at 45° to the +ve x-axis. 

Curves : (i)` x=y, y=0, y=a/sqrt2`

             (ii) `x=sqrt(a^2-y^2)` 

`x^2+y^2=a^2`circle with centre (0,0) and radius a. 

Cartesian coordinates → Polar coordinates 

(x,y) →  (r,𝜽)

Put x = r cos 𝜽 and y = r sin 𝜽 

`f(x,y)=log(x^2+y^2) = log r^2=2 log r=f(r,θ)`  

Limits changes to :    `0<= r <= a`

`0 <= θ <= pi/4` 

∴ `I= int_0^(pi/4) int_0^a 2log r.r dr dθ` 

= `2 int_0^(pi/4)[log r r^2/2 - r^2/4] _0^a dθ` 

=`2 int_0^(pi/4) [log a a^2/2 - a^2/4]dθ` 

∴ `I= [log a.a^2/2 - a^2/4] xx pi/4`

Concept: Linear Differential Equation with Constant Coefficient‐ Complementary Function
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×