Advertisement Remove all ads

Evaluate: ∫1x(x5+1) dx - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Evaluate: `int 1/("x"("x"^5 + 1))` dx

Advertisement Remove all ads

Solution

Let I = `int 1/("x"("x"^5 + 1))` dx

∴ I = `int "x"^4/("x"^5("x"^5 + 1))` dx

Put x5 = t

∴ `5"x"^4  "dx" = "dt"`

∴ `"x"^4  "dx" = "dt"/5`

∴ I = `int 1/("t"("t + 1")) * "dt"/5`

Let `1/("t"("t + 1")) = "A"/"t" + "B"/"t + 1"`

∴ 1 = A(t + 1) + Bt     ....(i)

Putting t = –1 in (i), we get

1 = A(0) + B(- 1)

∴ 1 = - B

∴ B = - 1

Putting t = 0 in (i), we get

1 = A(1) + B(0)

∴ A = 1

∴ `1/("t"("t + 1")) = 1/"t" + (- 1)/"t + 1"`

∴ I = `1/5 int (1/"t" + (-1)/"t + 1")` dt

`= 1/5 [int 1/"t" "dt" - int 1/("t + 1") "dt"]`

`= 1/5 [log |"t"| - log |"t" + 1|]` + c

`= 1/5 log |"t"/"t + 1"|` + c

∴ I = `1/5 log |"x"^5/("x"^5 + 1)|` + c

Concept: Methods of Integration: Integration Using Partial Fractions
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×