Evaluate ∫12x3-x+x dx - Mathematics and Statistics

Advertisements
Advertisements
Sum

Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`

Advertisements

Solution

Let I = `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`  ......(i)

= `int_1^2 (sqrt(1 + 2 - x))/(sqrt(3 - (1 + 2 - x)) + sqrt(1 + 2 - x))  "d"x`    ......`[because int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x]`

∴ I = `int_1^2 (sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))  "d"x`   ......(ii)

Adding (i) and (ii), we get

2I = `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x + int_1^2 (sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))  "d"x`

= `int_1^2 (sqrt(x) + sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))  "d"x`

= `int_1^2 1* "d"x`

= `[x]_1^2`

∴ 2I = 2 – 1 = 1

∴ I = `1/2`

  Is there an error in this question or solution?
Chapter 1.6: Definite Integration - Q.4

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

Evaluate : `intsec^nxtanxdx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of definite integrals, evaluate the integrals

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of definite integrals, evaluate the integrals

`int_0^(pi/2) (sin^(3/2) xdx)/(sin^(3/2) x + cos^(3/2)x) `


By using the properties of definite integrals, evaluate the integrals

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of definite integrals, evaluate the integrals

`int_0^4 x(1-x)^n dx`


By using the properties of definite integrals, evaluate the integrals 

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of definite integrals, evaluate the integrals

`int_0^pi (xdx)/(1+ sin x)`


By using the properties of definite integrals, evaluate the integrals

`int_0^(2x) cos^5 xdx`


By using the properties of definite integrals, evaluate the integrals

`int_0^(pi/2) (sin "x" - cos "x")/(1+sin"x" cos "x") "dx"`


By using the properties of definite integrals, evaluate the integrals

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate`int (1)/(x(3+log x))dx` 


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  "d"x` = ______


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^1 "e"^(2x) "d"x` = ______


`int_2^4 x/(x^2 + 1)  "d"x` = ______


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


`int (dx)/(e^x + e^(-x))` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_0^(2π) (dx)/(1 + e^(sin)x)`


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx` = ______.


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


`int_0^1|3x - 1|dx` equals ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Share
Notifications



      Forgot password?
Use app×