Advertisement Remove all ads

Evaluate ∫ ∫ ∫ √ 1 − X 2 a 2 − Y 2 B 2 − X 2 C 2 Dx Dy Dz Over the Ellipsoid X 2 a 2 + Y 2 B 2 + Z 2 C 2 = 1 . - Applied Mathematics 2

Sum

Evaluate `int int int sqrt(1-x^2/a^2-y^2/b^2-x^2/c^2 )`dx dy dz over the ellipsoid `x^2/a^2+y^2/b^2+z^2/c^2=1.`

Advertisement Remove all ads

Solution

Ellipsoid : `x^2/a^2+y^2/b^2+z^2/c^2`

Cartesian coordinates → spherical coordinate system
                         (𝒙,𝒚,𝒛) → (𝒓,𝜽,∅)

Put 𝒙=𝒂 𝒓𝒔𝒊𝒏 𝜽 𝒄𝒐𝒔 ∅ ,𝒚=𝒃 𝒓 𝒔𝒊𝒏 𝜽 𝒔𝒊𝒏 ∅ ,𝒛=𝒄 𝒓𝒄𝒐𝒔 𝜽

𝒅𝒙 𝒅𝒚 𝒅𝒛=𝒂𝒃𝒄 𝒓𝟐 𝒔𝒊𝒏 𝜽 𝒅𝒓 𝒅𝜽 𝒅∅

`therefore x^2/a^2+y^2/b^2+z^2/c^2=r^2`

`f(x,y,z)=sqrt(1-x^2/a^2-y^2/b^2-x^2/c^2 )=sqrt(1-r^2)=f(r,theta,O/`

Limits :
𝟎 ≤ 𝒓 ≤ 𝟏
𝟎 ≤ 𝜽 ≤ `pi/2`
𝟎 ≤ ∅ ≤ `pi/2`

`therefore  "I" = 8 int int int sqrt(1-r^2) abc  r^2 sin theta drd thetad O/`

`= 8 int_0^(pi/2) int_0^(pi/2) int_0^r sqrt(1-r^2) abc  r^2 sin theta drd thetad O/`

`=8abcint_0^(pi/2)sinthetad thetaint_0^(pi/2) dO/int_0^rsqrt(1-r^2)r^2 dr`

`8abc[-costheta]_0^(pi/2) [O/]_0^(pi/2)int_0^(pi/2)costsin^2tcost dt` ---------{ put r = sint}

`=8abc(pi/2)(pi/8)` …………{`usibetaf^n`}

`therefore"I"=pi^2/2(abc)`

Concept: Triple Integration Definition and Evaluation
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×