Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Advertisement Remove all ads
Solution
We need to evaluate `int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
`Let I=int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Multiply the numerator and the denominator by sec4x, we have
`I=int(sec^4dx)/(tan^4x+tan^2x+1)`
`I=int(sec^2x xx sec^2x dx)/(tan^4s+tan^2x+1)`
Now substitute t=tanx;dt=sec2xdx
Therefore,
`I=int(1+t^2)/(t^4+t^2+1)dt`
`I=int(1+1/t^2)/(t^2+1/t^2+1)dt`
`I=int(1+1/t^2)/(t^2+1/t^2-2+2+1)dt`
`I=int(1+1/t^2)/((T-1/T)^2+3)dt`
Substitute `z=t-1/t; dz=(1+1/t^2)dt`
`I=int(dz)/(z^2+3)`
`I=int(dz)/(z^2+(sqrt3)^2)`
`I=1/sqrt3 tan^(-1)(z/sqrt3)+c`
`I=1/sqrt3tan^(-1)((t-1/t)/sqrt3)+c`
`I=1/sqrt3tan^(-1)((tanx-1/tanx)/sqrt3)+c`
`I=1/sqrt3tan^(-1)((tanx-cotx)/sqrt3)+c`
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads