Advertisement Remove all ads

Evaluate ∫ 1 0 √ √ X − X D X - Applied Mathematics 2

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Evaluate `int_0^1sqrt(sqrtx-x)dx`

Advertisement Remove all ads

Solution

Let  I = `int_0^1sqrt(sqrtx-x)dx`

I = `int_0^1sqrt(sqrtx-sqrtx.sqrtx)dx`

Take `sqrtx` common

I`=int_0^1x^(1/4)sqrt(1-x^(1/2))dx`

Put `x6(1/2)=t`

Squaring both sides,

`therefore x=t^2`

Differentiate w.r.t x,

∴ 𝒅𝒙 = 𝟐𝒕.𝒅𝒕

Limits after substitution : Lim ⟶[ 0,1 ]

`therefore I=int_0^1t^(1/2)sqrt(1-t).2.tdt`

`=2int_0^1t^(3/2)sqrt(1-t)  dt`

`=2beta(5/2,3/2)` ...........`{int_0^1t^m.(1-t)^n=beta(m+1,n+1)}`

`therefore I = pi/8`

Concept: Differentiation Under Integral Sign with Constant Limits of Integration
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×