Advertisement Remove all ads

Evaluate ∫ 1 0 X 5 Sin − 1 X D X and Find the Value of β ( 9 2 , 1 2 ) - Applied Mathematics 2

Evaluate `int_0^1 x^5 sin ^-1 x dx`and find the value of β `(9/2,1/2)` 

Advertisement Remove all ads

Solution

`I= int_0^1 x^5 sin^-1 x dx` 

Put `sin^-1 x= t`          ∴ `x= sin t  dx= cost dt` 

When x = 0, t = 0      When` x=1, t=pi/2` 

`I= int_0^pi/2 sin^5t.t. cos t  dt = int_0^pi/2 t (sin^5t. cos t )dt` 

Integrating by parts, 

`1I=[t. sin^6 x/6]^(pi/2)-int_0^(pi/2) sin^6 x/6. 1.dt `

`I=(pi/2. 1/6-0)-1/6. (5.3.1)/(6.4.2).pi/2` 

 `I= pi/12-(5pi)/192` 

∴` I= (11pi)/192`  

`β (9/2,1/2)=(|~9/2|~1/2)/(|~5)= (7/2. 5/2. 3/2. 1/2. |~1/2 |~1/2)/(5.4.3.2.1)`

`β (9/2,1/2)=(105 pi)/384`

Concept: Exact Differential Equations
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×