Evaluate `int_0^1( x^a-1)/log x dx`
Advertisement Remove all ads
Solution
let `int_0^1( x^a-1)/log x dx`
Taking ‘a’ as parameter ,
I (a)= `int_0^1(x^a-1)/log x dx` -------- (1)
differentiate w.r.t a ,
`(dI(a))/(da)=d/(da) int_0^1 (x^a-1)/log x dx`
∴`(dI(a))/(da)=int_0^1 del/del_a (x^a-1)/log x dx ………{ D.U.I.S f(x)}`
∴`(dI(a))/(da)= int_0^1 (x^a log x)/log x dx ……… {(dx^a)/(da)=x^a. log a}` v
∴`( dI(a))/(da)= int_0^1 x^a dx`
∴ `(dI (a))/(da)=[(x^a+1)/(a+1)]1/0`
∴ `(dI(a))/(da)=1/(a+1)-0`
∴` (dI(a))/(da)=1/(a+1)`
now , integrate w.r.t a, `I (a)= int 1/(a+1) da`
`I(a)= log(a+1)+c` -------- (2)
where c is constant of integration
put a=0 in eqn (1),
`I(0)=int_0^1 0 dx=0`
And
From eqn `(2), I (0)=c`
∴` c=0`
∴` I= log (a+1)`
Concept: Linear Differential Equation with Constant Coefficient‐ Complementary Function
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads