Evaluate ∫01x2+3x+2x dx - Mathematics and Statistics

Advertisements
Advertisements
Sum

Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`

Advertisements

Solution

Let I = `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`

= `int_0^1 ((x^2 + 3x + 2)/x^(1/2))  "d"x`

= `int_0^1 (x^2/x^(1/2) + (3x)/(x^(1/2)) + 2/(x^(1/2)))  "d"x`

= `int_0^1 (x^(3/2) + 3x^(1/2) + 2x^(-1/2)) "d"x`

= `int_0^1 x^(3/2) "d"x + 3int_0^1 x^(1/2) "d"x + 2int_0^1 x^(-1/2)  "d"x`

= `[(x^(5/2))/(5/2)]_0^1 + 3[(x^(3/2))/(3/2)]_0^1 + 2[(x^(1/2))/(1/2)]_0^1`

= `2/5(1 - 0) + 3 xx 2/3(1 - 0) + 2 xx 2(1 - 0)`

= `2/5 + 2 + 4`

∴ I = `32/5`

Concept: Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 1.6: Definite Integration - Q.4

RELATED QUESTIONS

Prove that `int 1/(a^2 - x^2) dx = 1/"2a" log|(a +x)/(a-x)| + c`


 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate : `int_0^(2pi) sqrt(cos x) sin^3x*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate : `int_0^1 sqrt((1 - x)/(1 + x))*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_0^pi x/(1 + sin^2x)*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Solve the following.

`int_1^3x^2 logx dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_1^3x^2logx  dx`


Share
Notifications



      Forgot password?
Use app×