Evaluate ∫0111+x+x dx - Mathematics and Statistics

Advertisements
Advertisements
Sum

Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`

Advertisements

Solution

Let I = `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`

= `int_0^1 1/(sqrt(1 + x) + sqrt(x)) xx (sqrt(1 + x) - sqrt(x))/(sqrt(1 + x) - sqrt(x))  "d"x`

= `int_0^1 (sqrt(1 + x) - sqrt(x))/((sqrt(1 + x))^2 - (sqrt(x))^2)  "d"x`

= `int_0^1 (sqrt(1 + x) - sqrt(x))/(1 + x - x)  "d"x`

= `int_0^1 [(1 + x)^(1/2) - x^(1/2)]  "d"x`

= `int_0^1 (1 + x)^(1/2)  "d"x - int_0^1 x^(1/2)  "d"x`

= `[(1 + x)^(3/2)/(3/2)]_0^1 - [(x^(3/2))/(3/2)]_0^1`

= `2/3 [(2)^(3/2) - (1)^(3/2)] - 2/3 [(1)^(3/2) - 0]`

= `2/3(2sqrt(2) - 1) - 2/3(1)`

= `(4sqrt(2))/3 - 2/3 - 2/3`

∴ I = `4/3 (sqrt(2) - 1)`

Concept: Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 1.6: Definite Integration - Q.4

RELATED QUESTIONS

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(2pi) sqrt(cos x) sin^3x*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_((-pi)/2)^(pi/2) log((2 + sinx)/(2 - sinx))*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Choose the correct option from the given alternatives :

`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3)*dx` =


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^pi x/(1 + sin^2x)*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Solve the following : `int_0^1 e^(x^2)*x^3dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^3 log x  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications



      Forgot password?
Use app×